

University of California – Berkeley 29 October 2012

Biomaterials and Biofuels: *Path to Perdition or the Promised Land?*

Mark Jones

Executive External Strategy and Communications Fellow

The Dow Chemical Company

Dow.com/innovation

Last Week Was A Big Week

Sustainable Development of Algal Biofuels in the United States

Jennie C. Hunter-Cevera Committee Chair Mark E. Jones Committee member

THE NATION

THE NATIONAL ACADEMIES

Advisers to the Nation on Science, Engineering, and Medicine

National Academy of Sciences National Academy of Engineering Institute of Medicine National Research Council

THE NATIONAL

DIVISION ON EARTH AND LIFE STUDIES

Which is environmentally better?

A meat-eater in a Prius

A vegan in a Hummer

Sustainability is Unsustainable?

http://imgs.xkcd.com/comics/sustainable.png

Is this Cup Sustainable?

Sustainable is not an intrinsic property of a material! You can't know by just looking.

How about this one?

Sustainability Is A Balance

Sustainable development is the ability to meet present needs without compromising the needs of future generations. World Commission on Environment and Development's

We Are Poor Judges of the Energy We Use

Attari. Sjajzeem Z.; DeKay, Michael L.; Davidson, Cliff I.; de Bruin Wandi Bruine; "Public Perceptions of energy consumption and savings", PNAS doi 10.1073/pnas.1001509107

Same Data – Linear Plot

Attari. Sjajzeem Z.; DeKay, Michael L.; Davidson, Cliff I.; de Bruin Wandi Bruine; "Public Perceptions of energy consumption and savings", PNAS doi 10.1073/pnas.1001509107

Energy Perception and Reality

Same Data – Absolute Error

Attari. Sjajzeem Z.; DeKay, Michael L.; Davidson, Cliff I.; de Bruin Wandi Bruine; "Public Perceptions of energy consumption and savings", PNAS doi 10.1073/pnas.1001509107

Lighting Comparison

3 hours per day

Dow

Reasons

Cellulosic Biofuels: Key Issues

- How much biomass is available? not enough to replace fossil fuels
- How much will the biomass cost? it is not cheap!
- How much will biofuels cost? more than fossil
- How much more are we willing to pay? no premium

Energy Content

EIA is DOE Energy Information Agency, CMAI is an IHS affiliate, CARD is Iowa State Center for Agricultural and Rural Development, CEPEA is Centro de Estudos Avancado em Economia Aplicada – data for 3-5 years depending on source. updated 18 October 2012

Energy Sources Always Change

Source: IEA. EIA; US Primary Energy

Biomass Cost

Landowners / farmers have finite land and time. They will not plant lower value crops and sacrifice return off the land.

Energy Happens at Large Scale

Scale

Scale reduces the cost of production when materials are consumed or produced.

Scale is Important – An Example

Make a cup with an 8½" square and another with a 4¼" square

Scale is Important – An Example

Make a cup with an 8½" square and another with a 4¼" square

The bigger cup holds about a cup. The smaller only about 1/8 of a cup. The amount of paper required increases by the volume to the 2/3 power.

Description of the Geometry

MJPHD.NET

Technical Illustrations

Illustrations by Mark Jones

Technology Related

The Importance of Scale pdf

Biofuels Are Like a Jetpack

Changing Emphasis

Biomass 2011: Replace the Whole Barrel,

Supply the Whole Market The New Horizons of Bioenergy

July 26-27, 2011

"sugar is the new crude"

What Unhealthy Looks Like

Unhealthy

What Unhealthy Looks Like

US Chemical Industry Rejuvinated

Impact of Low Gas Prices

Owen Kean and T.K. Swift, American Chemistry Council, "Industry-Transforming Natural Gas into Products", National Academy Forum on Unconventional Gas, 11 September 2012.

Energy Content

EIA is DOE Energy Information Agency, CMAI is an IHS affiliate, CARD is Iowa State Center for Agricultural and Rural Development, CEPEA is Centro de Estudos Avancado em Economia Aplicada – data for 3-5 years depending on source. updated 18 October 2012

US Trend

Dow

Petroleum Flow 2009

Global Commodity Production

Scale Falls Quickly

Production Scale (metric tonnes per annum)

Interesting Correlation

Andrew Dickerson, Grant Mills, Jay Bauman, Young-Hui Chang, David Hu, The Wet-Dog Shake, Fluid Dynamics, 15 October 2010.

Scale Matters!

Most Common Version

2. A.

Green Chemistry Principles

Twelve Principles of Green Chemistry

1. Prevention: It is better to prevent waste than to treat or clean up waste after it has been created.

Use of Renewable Feedstocks: A raw material or feedstock should be renewable rather than depleting whenever technically and economically feasible.

- Use of Renewable Feedstocks: A raw material or feedstock should be renewable rather than depleting whenever technically and economically practicable.
- 8. Reduce Derivatives: Unnecessary derivatization (use of roups, protection, temporary
 - physic chemical processes) should be possible, because such steps require

d can generate waste.

eagents (as selective as possible) are metric reagents.

ation: Chemical products should be at the end of their function they break down egradation products and do not persist in the

s for Pollution Prevention: Analytical eed to be further developed to allow for realnonitoring and control prior to the formation stances.

Chemistry for Accident Prevention: he form of a substance used in a chemical be chosen to minimize the potential for

cnemical accidents, including releases, explosions, and fires.

and pressure.

Two Carbon Flavors

Dow

Plant Bottles

"At full capacity, it is estimated the facility will produce 500,000 metric tons of material per year. By using plant-based materials instead of non-renewable materials, the facility will remove the equivalent of 690,000 metric tons of carbon dioxide or the equivalent of consuming more than 1.5 million barrels of oil each year."

plantbottle^m

US consumption is 19 million barrels per DAY. World, 90 million.

Vacuum The Air?

What Impact?

material	per capita consumption (lb/yr)
PET	17
petroleum	6619
natural gas	8037
coal	6439
gasoline	2495
sand and gravel	13923
cement	512
iron ore	340
salt	403
beef	54.3
chicken data from HIS, 2012 ERS	55.7 USDA, 2011 National Mining Assoc., World Bank

PET Comparison

LCA of Polymers

Dow

Biopolymers rank in the middle of LCA rankings

POLYMER	Material	Green Design Rank	LCA Rank
Polylactic Acid – NatureWorks	Sugar/cornstarch	1	6
Polyhydroxyalkanoate-Stover	Cornstalks	2	4
Polyhydroxyalkanoate-General	Corn kernels	2	8
Polylactic Acid-General	Sugar/cornstarch	4	9
HD Polyethylene	Petroleum	5	2
PET	Petroleum	6	10
LD Polyethylene	Petroleum	7	3
Bio-PET	Petroleum /plants	8	12
Polypropylene	Fossil fuels	9	1
General Purpose Polystyrene	Petroleum	10	5
PVC	Chlorine/petroleum	11	7
Polycarbonate	Petroleum	12	11

Tabone, MD; Cregg, JJ; Beckman, EJ; Landis, AE. Environ. Sci. Technol. 2010, 44, 8264-9.

LCA of Polymers

F

Biopolymers rank in the middle of LCA rankings

POLYMER	Material	Green Design Rank	LCA Rank
Polypropylene	Fossil fuels	9	1
HD Polyethylene	Petroleum	5	2
LD Polyethylene	Petroleum	7	3
Polyhydroxyalkanoate-Stover	Cornstalks	2	4
General Purpose Polystyrene	Petroleum	10	5
Polylactic Acid – NatureWorks	Sugar/cornstarch	1	6
PVC	Chlorine/petroleum	11	7
Polyhydroxyalkanoate-General	Corn kernels	2	8
Polylactic Acid-General	Sugar/cornstarch	4	9
PET	Petroleum	6	10
Polycarbonate	Petroleum	12	11
Bio-PET	Petroleum /plants	8	12

Tabone, MD; Cregg, JJ; Beckman, EJ; Landis, AE. Environ. Sci. Technol. 2010, 44, 8264-9.

Rearranging the Deck Chairs on The Titanic

Which is Better for the Environment?

A polypropylene jersey

A polyester track suit

Sustainable Apparel Coalition Higgs Index

How Fabrics Stack Up

A look at how the Higg Index compares the environmental impact of materials used in apparel and footwear. The higher the score, the more sustainable the material. See fuller scores and rankings of more than 40 common materials at WSJ.com/LifeStyle.

MATERIAL	SCORE	COMMENT
Polypropylene	36.1	A byproduct of oil refining and natural-gas processing, this material—often used in long underwear—uses little land, water or energy and produces little waste. Low use of carcinogens, endocrine disruptors or other toxic chemicals.
Silk fabric	30.7	Chemically clean and leaving little waste, it scores high for sustainability, though its production does emit a high level of greenhouse gases.
Leather (corn-fed)	27.5	There is very little waste in its production compared with other materials, so it has a higher overall score than many materials, even though it ranks lower on land use; cows require large amounts of feed (which in turn requires pesticides and fertilizer) and pasture land. Animal-welfare issues aren't considered in the score.
Cotton	26.8	Takes a hit for heavy use of land and water, as well as bleaches and other chemicals used in processing, which puts it in a middling ranking for sustainability, despite its green reputation.
Wool	19.3	Because it requires both ample land to produce and toxic, energy-intensive chemical processing (to turn the scratchy fibers soft enough for modern sensibilities), wool scores low for sustainability.
Bamboo rayon-viscose fabric	18.9	Often billed as green by manufacturers, this material scores miserably because of the heavy processing, high waste, and energy use required to turn bamboo into a fabric.

Photo Researchers Inc. (sheep, refinery); Alamy (cattle); Nike (shirt); Getty Images (3)

Dow

Signs of Hope

This polypropylene cup uses 15% less plastic and creates 45% fewer carbon emissions than a cup made from PEL

Conclusions

- You now can MacGyver a measuring cup if you ever need to. (Hopefully this has given you and appreciation of the importance of scale)
- Too much hype for the possible and not enough focus on the practical in biofuels and clean tech
 - Incumbent fossil sources set the standard for competition
 - Scale wins and biomass availability limits biofuels scale
- The promise of bioproducts is not the same as biofuels.
- Fundamental engineering judgment is crucial to long term innovation and must lead the discussion about our energy future.

Facts are the air of scientists. Without them you can never fly.

- Linus Pauling

Call to Scientists and Engineers

Too much hype for the possible and not enough focus on the practical.

We are letting society down!

Which is environmentally better?

A vegan in a Hummer

Prius is a bit better

Food and Energy are Connected

Christopher M. Jones and Daniel M. Kammen; "Quantifying Carbon Footprint Reduction Opportunities for U.S. Households and Communities", *Environ. Sci. Technol.*, 2011, **45** (9), pp 4088-4095; DOI: 10.1021/es102221h

Thank You

Dow.com

PET Comparison

Recognizing Fads

The art of being wise is the art of knowing what to overlook - William James

Which Uses Less Total Energy To Go A Mile? (option 3)

2011 compressed 2011 Leaf natural gas Civic electric vehicle

2011 Civic using E-85

current corn ethanol

U.S. and reagage yes

natural gas combined cycle

Which Uses Less Total Energy To Go A Mile? (option 3)

2011 compressed natural gas Civic 2011 Leaf electric vehicle 2011 Civic using E-85

U.S. average gas

current corn ethanol

natural gas combined cycle

Electrification Beats Biofuels

Dow

GREET October 2011 upda

Electrification Beats Biofuels

Dow

GREET October 2011 upda

Thermodynamic Entitlement

What Consumers Buy

