MJPhD

STOPPING PROPAGATION OF MISINFORMATION: *CORRECTING MICROPLASTICS MISINFORMATION IS A START*

MARK JONES CREATIVE DIRECTOR MJPHD, LLC

19 August 2024

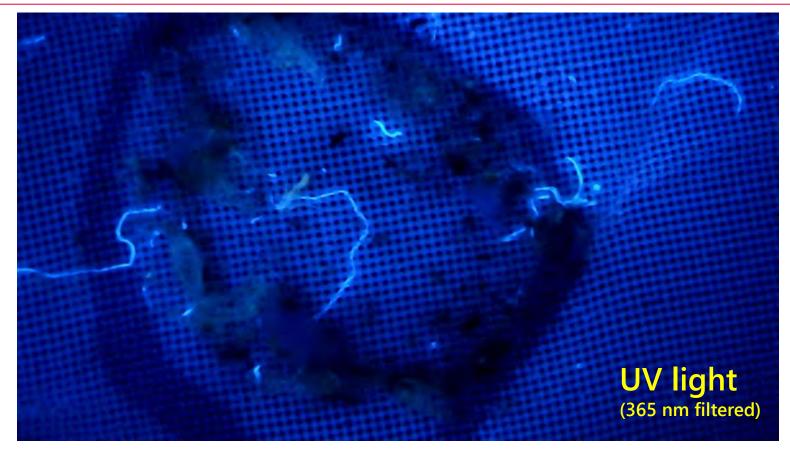
Widely reported facts about environmental plastic and plastic consumption are wrong.

Corrections of public perception and in the scientific literature are challenging.

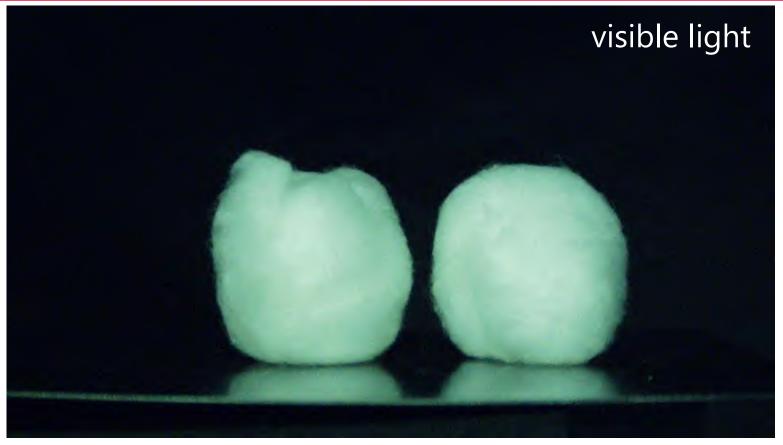
Plastic particles are everywhere.

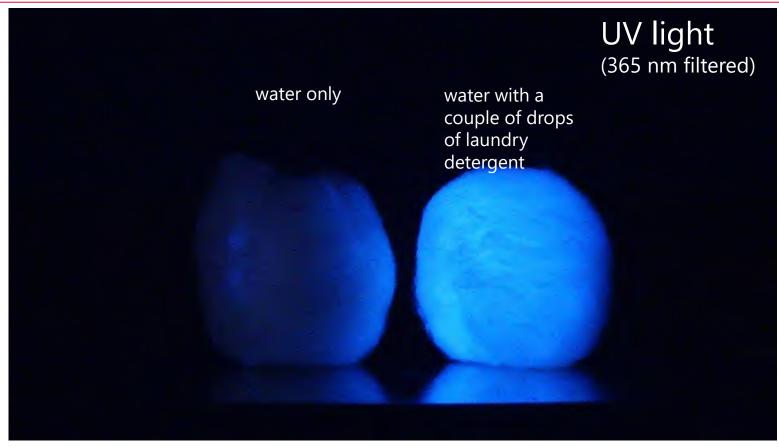
OBX BEACH SAND

OBX BEACH SAND



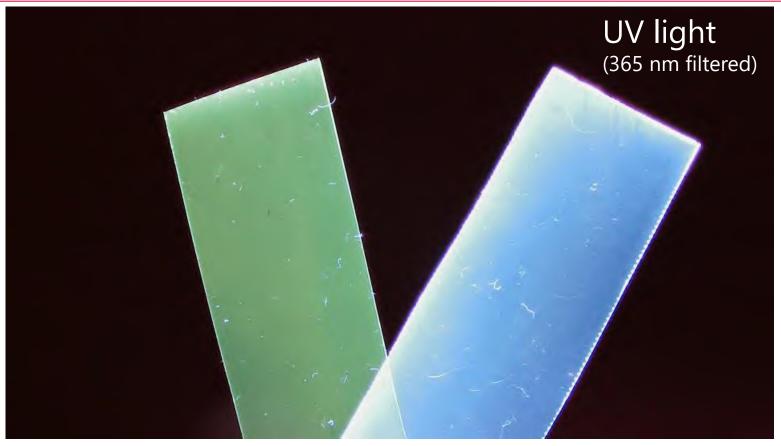
OBX OCEAN WATER


OBX OCEAN WATER

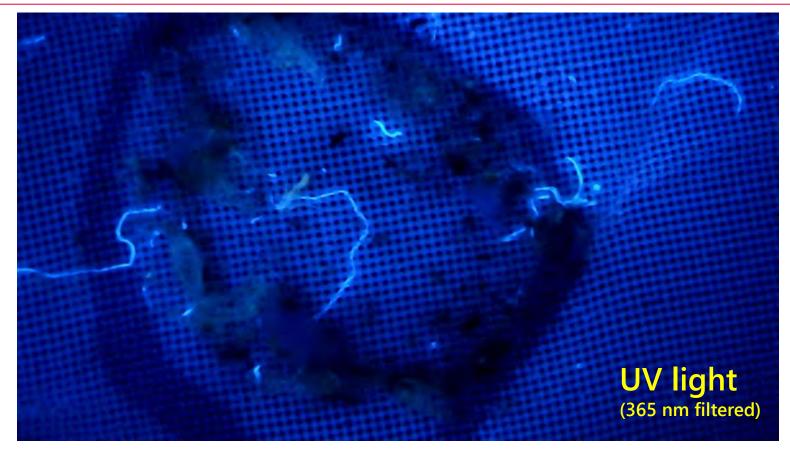

ble

COTTON BALLS

COTTON BALLS – OPTICAL BRIGHTENERS



PET CONTAINERS



PET – OPTICAL BRIGHTENERS

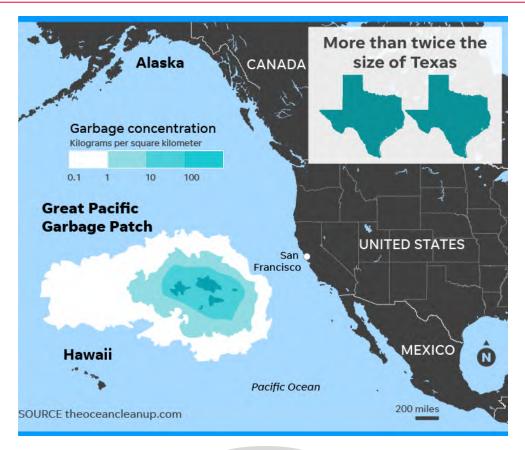
OBX OCEAN WATER

ble

Article: 300-Mile Swim Through The Great Pacific Garbage Patch Will Collect Data On Plastic Pollution

https://www.forbes.com/sites/scottsnowden/2019/05/30/300-mile-swim-through-the-great-pacific-garbage-patch-will-collect-data-on-plastic-pollution/

Caption: A Part of the Great Pacific Garbage Patch



source: Marine Debris Program

THE PACIFIC GYRE

In The Pacific Gyre At Point of Highest Plastic Concentration

ARCTIC SUNR

Article: 300-Mile Swim Through The Great Pacific Garbage Patch Will Collect Data On Plastic Pollution

https://www.forbes.com/sites/scottsnowden/2019/05/30/300-mile-swim-through-the-great-pacific-garbage-patch-will-collect-data-on-plastic-pollution/

Caption: A Part of the Great Pacific Garbage Patch

Article text: "these patches are almost entirely made up of tiny bits of plastic, called microplastics."

http://b.parsons.edu/~pany468/parsons/political_website/source2/index.html

ASSESSING PLASTIC INGESTION FROM NATURE TO PEOPLE

AN ANALYSIS FOR WWF BY Dalberg

A new study by the University of Newcastle, Australia suggests that an average person could be ingesting approximately 5 grams of plastic every week. The equivalent of a credit card's worth of microplastics. This summary report highlights the key ways plastic gets into our body, and what we can do about it.

MJPhD

wwfint.awsassets.panda.org/downloads/plastic_ingestion_web_spreads.pdf

wwf.panda.org/wwf_news/?348337/Revealed-plastic-ingestion-by-people-could-be-equating-to-a-credit-card-a-week

Newsroom

Future Students
Research and Innovation
The Conversation
Industry
International
Community and Alumni
Library
Current Students
Current Staff
College of Engineering, Science and Environment
College of Health, Medicine and Wellbeing
College of Human and Social Futures
Pathways and Academic Learning Support Centre
Sustainable Development Goals

Study Research Engage Campus Life Our Uni

O

Plastic ingestion by people could be equating to a credit card a week

Wednesday, 12 June 2019

Tweet InLinkedin

A new study finds on average people could be ingesting approximately 5 grams of plastic every week, which is the equivalent weight of a credit card.

The analysis No Plastic in Nature: Assessing Plastic Ingestion from Nature to People prepared by Dalberg, based on a study commissioned by WWF and carried out by University of Newcastle, Australia, suggests people are consuming about 2000 tiny pieces of plastic every week. That's approximately 21 grams a month, just over 250 grams a year.

The University of Newcastle is the first to combine data from over 50 studies on the ingestion of

Dr Thava Palanisami

microplastic by people. The findings are an important step towards understanding the impact of plastic pollution on humans. It also further confirms the urgent need

www.newcastle.edu.au/newsroom/featured/plastic-ingestion-by-people-could-be-equating-to-a-credit-card-a-week

品

<

Aa

World

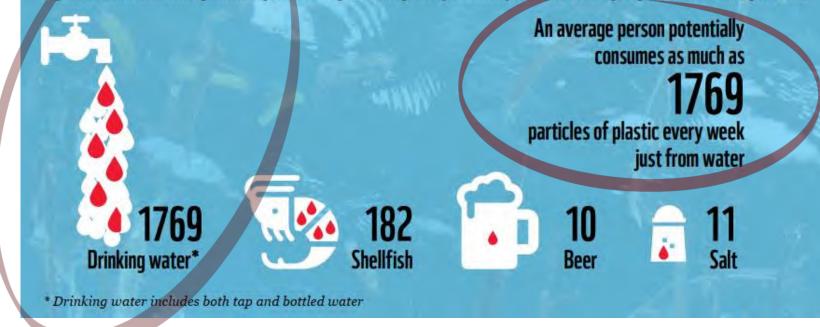
You may be eating a credit card's worth of plastic each week - study

Reuters

June 11, 2019 9:29 PM EDT - Updated 5 years ago

MJPhD

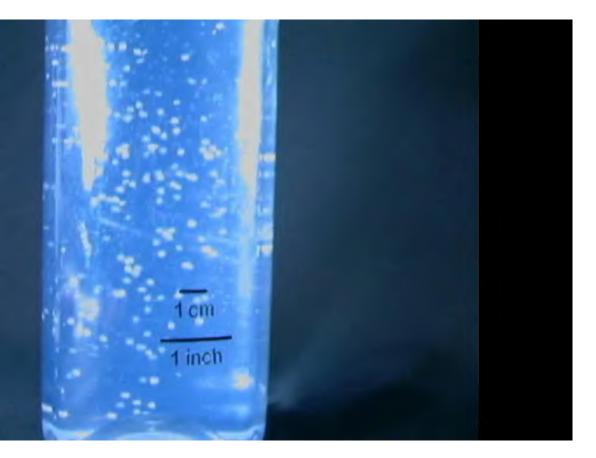
www.reuters.com/article/us-environment-plastic/you-may-be-eating-a-credit-cards-worth-of-plastic-each-week-study-idUSKCN1TD009/

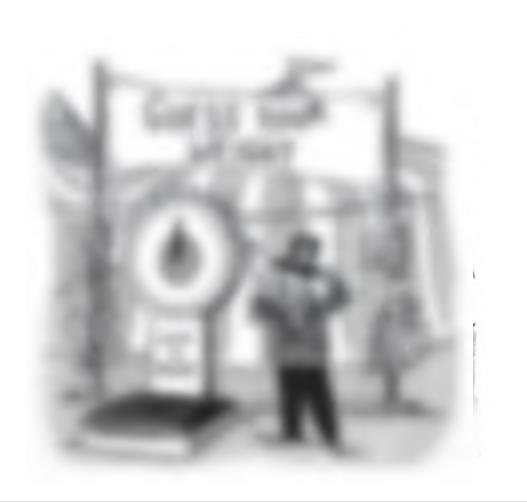


MJPhD

2.5 mg average particle to reach 5 grams.

Figure 2: Estimated microplastics ingested through consumption of common foods and beverages (particles (o-1mm) per week)





Average 2.5 mg particles.

Plastic microparticle 0.65 grams consisting of 523 particles, in a liter of water equaling the concentration in order to ingest 5 grams per week. Such a high concentration is easily seen both in water and upon drying. The particles are cut from 1.5 mm plastic monofilament.

Journal of Hazardous Materials 404 (2021) 124004

Contents lists available at ScienceDirect

Journal of Hazardous Materials

journal homepage: www.elsevier.com/locate/jhazmat

Research paper

Estimation of the mass of microplastics ingested – A pivotal first step towards human health risk assessment

Kala Senathirajah^a, Simon Attwood^b, Geetika Bhagwat^c, Maddison Carbery^c, Scott Wilson^d, Thava Palanisami^{b,*}

* Global Innovative Centre for Advanced Nanomaterials(GICAN), Faculty of Engineering and Built Environment, The University of Neucastle, Callaghan, NSW 2308, Australia

^b The World Wide Fund for Nature (WWF), 354 Tanglin Road, Singapore, Singapore

⁶ School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia

⁶ Department of Environmental Science, Macquarie University, Sydney, Australia

ARTICLEINFO

ABSTRACT

Keywords: Exposure pathways Human health Ingestion Microplastics Plastic pollution Risk

MJPhD

The ubiquitous presence of microplastics in the food web has been established. However, the mass of microplastics exposure to humans is not defined, impeding the human health risk assessment. Our objectives were to extract the data from the available evidence on the number and mass of microplastics from various sources, to determine the uncertainties in the existing data, to set future research directions, and derive a global average rate of microplastic ingestion to assist in the development of human health risk assessments and effective management and policy options. To enable the comparison of microplastics exposure across a range of sources, data extraction and standardization was coupled with the adoption of conservative assumptions. Following the analysis of data from fifty-nine publications, an average mass for individual microplastics in the 0–1 mm size range was calculated. Subsequently, we estimated that globally on average, humans may ingest 0.1–5.g of microplastics weekly through various exposure pathways. This was the first attempt to transform microplastic counts into a mass value relevant to human toxicology. The determination of an ingestion rate is fundamental to assess the human health risks of microplastic ingestion. These findings will contribute to future human health risk assessment frameworks.

humans may ingest 0.1-5 g of microplastics weekly through various exposure pathways

Table 6

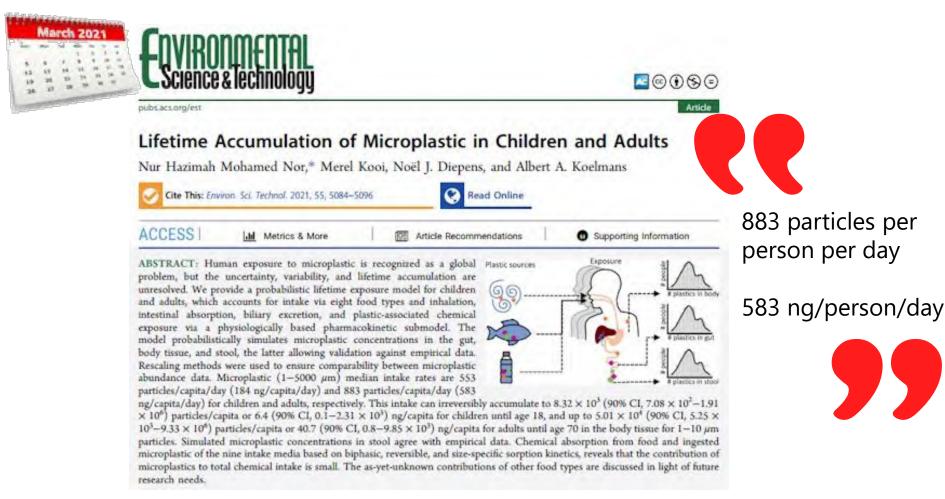
Summary of the annual average number of microplastics (particles) ingested (particles), and global average rate of microplastics ingested (g) per person per year.

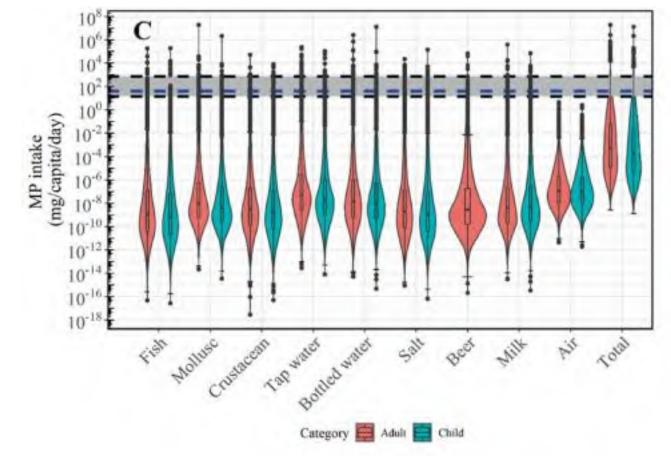
Source of particles	ANMP _{ingested} (particles)	GARMI (0–1 mm) Scenario 1 (g)	GARMI (0–1 mm) Scenario 2 (g)	GARMI (0–1 mm) Scenario 3 (g)
Shellfish	9,445	26.4	0.0	0.0
Salt	565	1.6	7.4	14.2
Beer	523	1.46	0.3	0.5
Drinking water	91,994	257.5	0.0	0.0
Total (per year)	102,527	287.0	7.7	14.7
TOTAL (PER WEEK)	1,972	5.5	0.1	0.3

0.02 credit cards worth

another model

0.1 g


NO PLASTIC IN NATURE: ASSESSING PLASTIC INGESTION FROM NATURE TO PEOPLE


AN ANALYSIS FOR WWF BY Dalberg

an average person could be ingesting approximately 5 grams of plastic every week.

https://pubs.acs.org/doi/full/10.1021/acs.est.0c07384

Bert Koelmans makes point that a week's ingestion is like a grain of salt between chopsticks – mere micrograms.

Exposure and Health (2023) 15:33-51 https://doi.org/10.1007/s12403-022-00470-8

REVIEW PAPER

To Waste or Not to Waste: Questioning Potential Health Risks of Microand Nanoplastics with a Focus on Their Ingestion and Potential Carcinogenicity

Elisabeth S. Gruber¹ · Vanessa Stadlbauer^{2,3} · Verena Pichler⁴ · Katharina Resch-Fauster⁵ · Andrea Todorovic⁵ · Thomas C. Meisel⁶ · Sibylle Trawoeger⁷ · Oldamur Hollóczki⁸ · Suzanne D. Turner^{9,10} · Wolfgang Wadsak^{3,11} · A. Dick Vethaak^{12,13} · Lukas Kenner^{3,14,15,16}

Received: 8 October 2021 / Revised: 30 December 2021 / Accepted: 11 February 2022 / Published online: 22 March 2022 © The Author(s) 2022

Abstract

Micro- and nanoplastics (MNPs) are recognized as emerging contaminants, especially in food, with unknown health significance. MNPs passing through the gastrointestinal tract have been brought in context with disruption of the gut microbiome. Several molecular mechanisms have been described to facilitate tissue uptake of MNPs, which then are involved in local inflammatory and immune responses. Furthermore, MNPs can act as potential transporters ("vectors") of contaminants and as chemosensitizers for toxic substances ("Trojan Horse effect"). In this review, we summarize current multidisciplinary knowledge of ingested MNPs and their potential adverse health effects. We discuss new insights into analytical and molecular modeling tools to help us better understand the local deposition and uptake of MNPs that might drive carcinogenic signaling. We present bioethical insights to basically re-consider the "culture of consumerism." Finally, we map out prominent research questions in accordance with the Sustainable Development Goals of the United Nations.

Keywords Microplastic · Nanoplastic · Carcinogenesis · Human health · Bioethics issue

Translated into more imaginable numbers, on average we ingest five grams of MPs per week per person (roughly corresponding to the mass of a credit card).

MEDICAL UNIVERSITY OF VIENNA

∃ Menu

DEUTSCH

Health risk due to micro- and nanoplastics in food

Home > About us > News > 2022 > Health risk due to micro- and nanoplastics in food

< All News

2022-03-24 - MEDICINE & SCIENCE

(Vienna, 24-03-2022) Five grams of plastic particles on average enter the human gastrointestinal tract per person Five grams of plastic particles on average enter the human gastrointestinal tract per person per week

MJPhD

www.meduniwien.ac.at/web/en/ueber-uns/news/default-0f889c8985-1/gesundheitsrisiko-durch-mikro-und-nanoplastik-in-lebensmitteln/

ScienceDaily

Your source for the latest research news

S_D Health ▼ Tech ▼ Enviro ▼ Society ▼ Quirky ▼

Science News

from research organizations

Health risk due to micro- and nanoplastics in food

- Date: March 24, 2022
- Source: Medical University of Vienna
- Summary: Five grams of plastic particles on average enter the human gastrointestinal tract per person per week. This is roughly equivalent to the weight of a credit card. Whether ingested micro- and nanoplastics pose a health risk is being investigated in numerous studies but is largely unknown to date. A research team has now summarized the current state of scientific knowledge.

Five grams of plastic particles on average enter the human gastrointestinal tract per person per week

🗗 💙 🕞 😒 🐼

HEALTH

You're eating a credit card's worth of plastic a week — and it's killing your gut

By Brooke Kato

Published March 30, 2022 | Updated March 30, 2022, 4:47 p.m. ET

nypost.com/2022/03/30/youre-eating-a-credit-cards-worth-of-plastic-a-week-and-its-killing-your-gut/

Junk Food and Tainted Water: People Ingest a Credit Card Worth of Nanoplastics Weekly, Study Says

Mar 31, 2022 at 5:09 PM EDT

B ottled water or tap?

How you answer that question could have some major implications for your long-term health, a new study into the health effects of ingested plastic particles shows.

That study also contained this startling fact: People are eating the equivalent of one plastic credit card every week in their diet. The plastic particles enter the human food chain through plastic waste contained in fish, sea salt and drinking water, the study shows.

Scientists say such nanoplastics disrupt the human gut bacteria and can lead to killer diseases like cancer and diabetes.

www.newsweek.com/junk-food-tainted-water-people-ingest-credit-card-worth-nanoplastics-weekly-study-says-1693970

 \equiv TastingTable. Recipes news exclusives restaurants cook drink

COOK

You Probably Eat A Credit Card's Worth Of Plastic Every Week

BY GILLIE HOUSTON / UPDATED: OCT. 19, 2022 6:53 PM EST

www.tastingtable.com/1062298/you-probably-eat-a-credit-cards-worth-of-plastic-every-week/

Journal of Hazardous Materials Letters 3 (2022) 100071

Contents lists available at ScienceDirect

Journal of Hazardous Materials Letters

journal homepage: www.sciencedirect.com/journal/journal-of-hazardous-materials-letters

Ingested microplastics: Do humans eat one credit card per week?

Martin Pletz

Designing Plastics and Composite Materials, Department of Polymer Engineering and Science, Montanuniversitaet Leoben, Austria

ARTICLEINFO

ABSTRACT

Keywords: Microplastics Size distribution Ingestion Human health Ingested Microplastic (MP) particles can harm the human body. Estimations of the total mass of ingested MP particles correspond to 50 plastic bags per year (Bai et al., 2022), one credit card per week (Gruber et al., 2022), or a median value of 4.1 µg/week for adults (Mohamed Nor et al., 2021). The first two estimations are based on an analysis (Senathirajah et al., 2021) that predicts a total ingested mass of MP particles $m_{i,MP}$ of 0.1–5 g/week. This work revisits and evaluates this calculation and compares its results and methods to Mohamed Nor et al. (2021). Senathirajah combines data of averaged MP particle masses m_{MP} from papers that reported MP particle sizes and MP particle counts n_{MP} in shellfish, salt, beer, and water based on other papers that detected MP particles. Combined with the estimated weekly consumption of those consumables, they compute m_{LMP} . This work raises some serious issues of Senathirajah in the way they combine data and they obtained particle sizes. It concludes that Senathirajah overestimates $m_{i,MP}$ by several orders of magnitude and that $m_{i,MP}$ can be considered as a rather irrelevant factor for the toxic effects of MP particles on the human body.

a human eats
 a credit card
 worth of MPs not
 every week but
 every 23
 thousand years.

MJPhD

pubs.acs.org/estwate

Review

Strategies to Reduce Risk and Mitigate Impacts of Disaster: Increasing Water Quality Resilience from Microplastics in the Water Supply System

Kala Senathirajah* and Thava Palanisami

factors that make them vulnerable highlights capacities required to reduce risk and mitigate impacts. By evaluating the social and physical infrastructure resilience to microplastics in the water supply system and recommending multilisoriplinary strategies to build resilience over time, we aim to catalyze action to address the problem. This will also contribute toward achieving targets of the Sendai Framework for Disaster Risk Reduction 2015–2030 and UN Sustainable Development Goals.

1. INTRODUCTION

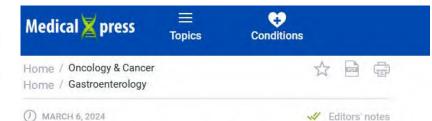
Plastics are versatile, synthetic, widely used, persistent materials found in all aspects of our lives, in all sectors, and as pollution all around the globe. The plastic pollution crisis meets all criteria to qualify as a slow-onset disaster.1 Microplastics are ubiquitous plastic fragments, spheres, fibers, filaments, and films, viz., plastic particles greater than 100 nm and less than 5 mm in size. Nanoplastics are particles less than 100 nm.² Microplastics have been detected in the air, water, and terrestrial environments, found from Mount Everest to the Marianna trench.³ Microplastics have been found in plants, animals, and humans,⁵ in human placenta,⁶ lungs, blood, and even breastmilk.7 A recent study estimated that we could be ingesting cumulatively 0.1 to 5 g of microplastics a week⁵ from a combination of sources, including from drinking water which is a fundamental need for survival. Microplastics have been detected in water supply sources, tap water, and bottled water around the world 8,9

Microplastics contaminate the water supply system (WSS) due to numerous reasons, including the existing social systems' policies and consumptive behaviors, and limitations in treatment. The fate and transport of microplastics through the water supply cycle (WSC) are varied, and thus the timeframes and implications also range greatly depending on the entry and exit points. For example, microplastics exiting via ingestion by a human has different implications to microplastics exiting via biosolids application for agriculture, although notably both instances impinge on the health and well-being of humans⁵ and ecosystems.⁴⁹ The transport and fate of microplastics are a function of numerous factors including polymer type, size, shape, specific surface area, density, crystallinity, molecular structure, formation of biofilm and additives, among others. These also influence the vulnerability of the WSS and its sensitivity to the microplastic contamination.

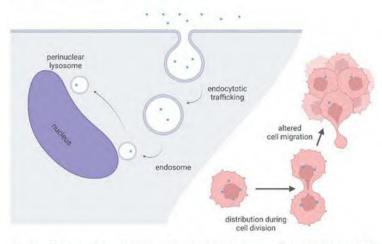
Access to safe drinking water and wastewater services (W&WWS) are a human right,^{11,12} and are essential to ensure health and well-being, good hygiene practices, economic prosperity, and minimize the spread of water borne diseases.¹³ There are many disruptive events that impact W&WWS. Key to the continuity of service is water quality (WQ). From a

 Received:
 April 20, 2023

 Revised:
 August 11, 2023


 Accepted:
 August 14, 2023

 Published:
 August 29, 2023


A recent study estimated that we could be ingesting cumulatively 0.1 to 5 g of microplastics a week

Micro- and nanoplastics in the body are passed on during cancer cell division, finds study

by Medical University of Vienna

Credit: Chemosphere (2024). DOI: 10.1016/j.chemosphere.2024.141463

Plastic particles up to the weight of a credit card (approx. 5 grams) enter the gastrointestinal tract every week.

medicalxpress.com/news/2024-03-micro-nanoplastics-body-cancer-cell.html

Does it matter that 5 grams per week is wrong?

the equivalent of a credit card's worth of plastic through the water we drink the food we eat and the

called micro plastics every week we consume

California Accorney General Rob Bonta makes a major announcement on the California Department of Justice's efforts to protect the environment from plastic pollution.

Streamed live on A

3 2022

Journal of Hazardous Materials Volume 467, 5 April 2024, 133631

Research Paper

The World Wildlife Microplastics are detected in human gallstones and have the ability to form large Fund reported that adults consume cholesterol-microplastic heteroaggregates more than 5 g of

Deyu Zhang ° ¹, Chang Wu ° ¹, Yue Liu ° ¹, Wanshun Li ° ¹, Shiyu Li °, Lisi Peng °, Le Kang °, Saif Ullah ^c, Zijun Gong ^b, Zhaoshen Li ^a, <u>Dan Ding ^{d 2} 2</u> 🖾 , <u>Zhendong Jin ^{a 2} 2</u> 🖾 , Haojie Huang a 2 🔉 🖂

Show more V

+ Add to Mendeley 😪 Share 🍠 Cite

https://doi.org/10.1016/j.jhazmat.2024.133631 7

Get rights and content 7

HAZARD

plastic each week

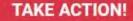
on average.

the average person could be ingesting a Why UNDP is tackling the developmental dimensions of plastic credit card worth of plastics, pollution approximately five

The burdens disproportionately affect the vulnerable

JUNE 20, 2024

grams every week.


https://yourplasticdiet.org/

MJPhD

A credit card a week?

On average people could be ingesting around 5 grams of plastic every week, which is the equivalent weight of a credit card. Our study suggests people could be consuming on average over 100,000 microplastics every year. That's approximately 21 grams a month, just over 250 grams a year.

PNAS

Rapid single-particle chemical imaging of nanoplastics by SRS microscopy

Naixin Qian^a 😕, Xin Gao^a 😕, Xiaoqi Lang^a, Huiping Deng^b, Teodora Maria Bratu^b, Qixuan Chen^c, Phoebe Stapleton^d 💿, Beizhan Yan^{b1} 💿, and Wei Mina,e,1

ENVIRONMENTAL SCIENCES

CHEMISTRY

RESEARCH ARTICLE

Edited by Eric O. Potma, University of California, Irvine, CA; received January 11, 2023; accepted October 24, 2023 by Editorial Board Member Shaul Mukamel

Plastics are now omnipresent in our daily lives. The existence of microplastics (1 µm to 5 mm in length) and possibly even nanoplastics (<1 µm) has recently raised health concerns. In particular, nanoplastics are believed to be more toxic since their smaller size renders them much more amenable, compared to microplastics, to enter the human body. However, detecting nanoplastics imposes tremendous analytical challenges on both the nano-level sensitivity and the plastic-identifying specificity, leading to a knowledge gap in this mysterious nanoworld surrounding us. To address these challenges, we developed a hyperspectral stimulated Raman scattering (SRS) imaging platform with an automated plastic identification algorithm that allows micro-nano plastic analysis at the single-particle level with high chemical specificity and throughput. We first validated the sensitivity enhancement of the narrow band of SRS to enable high-speed single nanoplastic detection below 100 nm. We then devised a data-driven spectral matching algorithm to address spectral identification challenges imposed by sensitive narrow-band hyperspectral imaging and achieve robust determination of common plastic polymers. With the established technique, we studied the micro-nano plastics from bottled water as a model system. We successfully detected and identified nanoplastics from major plastic types. Micro-nano plastics concentrations were estimated to be about 2.4 ± 1.3 × 10⁵ particles per liter of bottled water, about 90% of which are nanoplastics. This is orders of magnitude more than the microplastic abundance reported previously in bottled water. High-throughput single-particle counting revealed extraordinary particle heterogeneity and nonorthogonality between plastic composition and morphologies; the resulting multidimensional profiling sheds light on the science of nanoplastics.

optical microscopy | nanoplastics | Raman imaging | single particle analysis | Stimulated Raman Scattering

Plastic pollution has been a rising global concern, with increasing plastic consumption

https://www.pnas.org/doi/10.1073/pnas.2300582121

Significance

Micro-nano plastics originating from the prevalent usage of plastics have raised increasingly alarming concerns worldwide. However, there remains a fundamental knowledge gap in nanoplastics because of the lack of effective analytical techniques. This study developed a powerful optical imaging technique for rapid analysis of nanoplastics with unprecedented sensitivity and specificity. As a demonstration, micro-nano plastics in bottled water are analyzed with multidimensional profiling of individual plastic particles. Quantification suggests more than 10⁵ particles in each liter of bottled water, the majority of which are nanoplastics. This study holds

Bloomberg								US Edition 👻			
	Live Now	Markets	Economics	Industries	Tech	AI	Politics	Wealth	Pursuits	Opinion	Busir

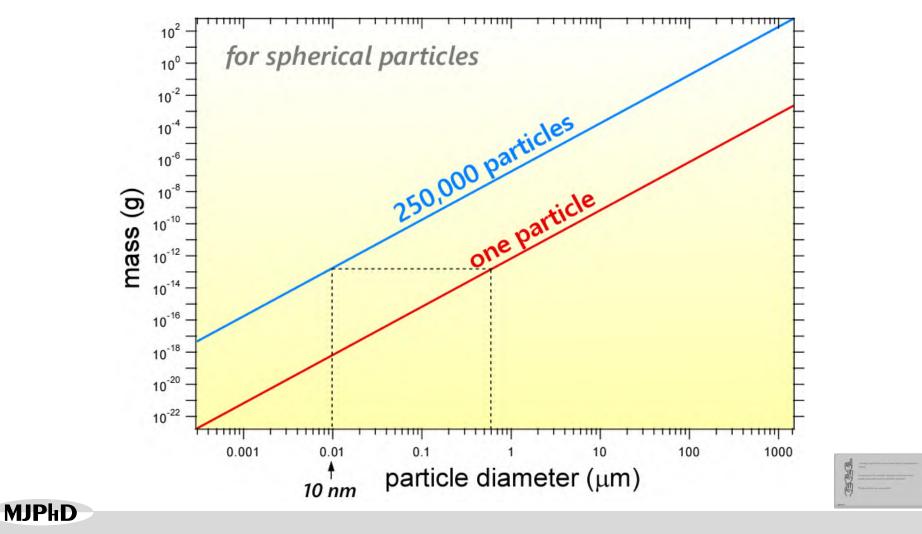
Green | Greener Living

Bottled Water Contains More Plastic Particles Than Previously Thought

Researchers found hundreds of thousands of plastic particles in one-liter bottles of water sold in the US, 90% of them small enough to enter the human bloodstream.

MJPhD

U.S. World Politics Entertainment HealthWatch MoneyWatch Crime Sports <u>Essentials</u>	


U.S. →

Bottled water contains up to 100 times more plastic than previously estimated, new study says

By Aliza Chasan Updated on: January 9, 2024 / 7:52 PM EST / CBS News

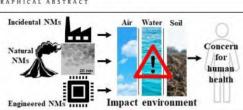
Nanomaterials in the environment, human exposure pathway, and health effects: A review

Arindam Malakar^a, Sushil R, Kanel^{a,b,*}, Chittaranjan Ray^a, Daniel D, Snow^c, Mallikarjuna N, Nadagouda^d

* Nebraska Water Center, part of the Robert B. Daugherty Water for Food Clobal Institute 2021 Transformation Drive, University of Nebraska, Lincoln, NE 68588-0844, USA

^b Department of Chemistry, Wright State University, Dayton, OH 45435, USA

⁶ School of Natural Resources and Nebraska Water Center, part of the Robert B. Daugherty Water for Food Global Institute, 202 Water Sciences Laboratory, University of Nebraska, Lincoln, NE 68583-0844, USA


^d Department of Mechanical and Materials Engineering, Wright State University, 3640 Colonel Clenn Hwy., Dayton, OH 45435, USA

ABSTRACT

HIGHLIGHTS

GRAPHICAL ABSTRACT

- · The ubiquitous presence of natural and synthetic nanomaterials in the environment
- · Nanomaterials influence on the natural ecosystem.
- · Exposure pathways and life cycle of nanomaterials in the human body · Nanotoxicity of nanomaterials on
- human health

ARTICLE INFO

Article history: Received 20 August 2020 Received in revised form 24 October 2020 Accepted 24 October 2020 Available online 17 November 2020

Editor: Lotfi Aleya

Keywords: Nanomaterials Environmental impact Human exposure Health effects

Nanomaterials (NMs), both natural and synthetic, are produced, transformed, and exported into our environment daily. Natural NMs annual flux to the environment is around 97% of the total and is significantly higher than synthetic NMs. However, synthetic NMs are considered to have a detrimental effect on the environment. The extensive usage of synthetic NMs in different fields, including chemical, engineering, electronics, and medicine, makes them susceptible to be discharged into the atmosphere, various water sources, soil, and landfill waste. As ever-larger quantities of NMs end up in our environment and start interacting with the biota, it is crucial to understand their behavior under various environmental conditions, their exposure pathway, and their health effects on human beings. This review paper comprises a large portion of the latest research on NMs and the environment. The article describes the natural and synthetic NMs, covering both incidental and engineered NMs and their behavior in the natural environment. The review includes a brief discussion on sampling strategies and various analytical tools to study NMs in complex environmental matrices. The interaction of NMs in natural environments and their pathway to human exposure has been summarized. The potential of NMs to impact human health has been elaborated. The nanotoxicological effect of NMs based on their inherent properties concerning to human health is also reviewed. The knowledge gaps and future research needs on NMs are reported. The findings in this paper will be a resource for researchers working on NMs all over the world to understand better the challenges associated with NMs in the natural environment and their human health effects. © 2020 Elsevier B.V. All rights reserved.

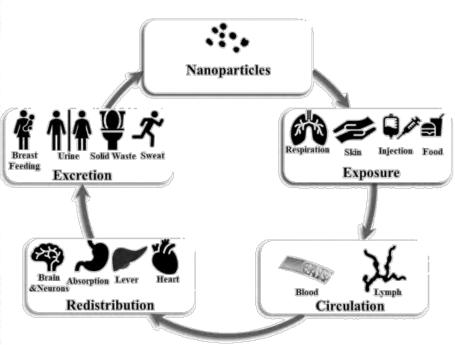


Fig. 7. Exposure pathway, circulation, redistribution, and final excretion of nanomaterials inside the human body.

WHAT CAN BE DONE?

Highlight the issue.

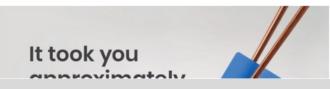
Use available tools to make corrections.

Push for better journal algorithms.

RRD WORLD Microplastic

Microplastics are bad, but ignoring science is worse

www.rdworldonline.com/microplastics-are-bad-but-ignoring-science-is-worse/


By Mark Jones | March 20, 2024

🕝 🛛 in 🖂 🛨

We all know that 98.6° F is human body temperature ... only it isn't. A new **study** reconfirms something extensively covered during the COVID pandemic: Normal human body temperature falls between 97.3° and 98.2° F — with 97.9° F as today's average.

And 5 grams per week is the amount of plastic every person consumes ... only it isn't. Like outdated bodytemperature assertions, this 5-g value (widely reported in many science and news circles) is flawed. The difference is that data manipulation and memes didn't give us the 98.6° F value ... but they did help propel the 5g-of-plastic assertion. It has shaken my faith in the scientific community.

Now, the world widely accepts the average person consumes 5 g of plastic per week the weight of a credit card. Thanks to one now-quite-famous picture of a credit card

Widely reported facts about environmental plastic and plastic consumption are wrong.

Corrections of public perception and in the scientific literature are challenging.

Plastic particles are everywhere.

MJPHD.net

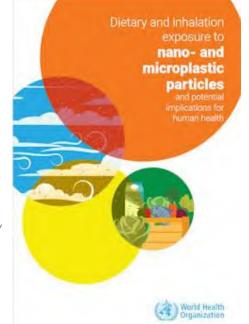
The New York Times

Researchers don't have strong evidence yet for how these particles affect our health.

The Washington Post

Researchers don't yet know how dangerous tiny plastics are for human health.

https://www.washingtonpost.com/climate-environment/2024/01/08/microplastics-nanoplastics-bottled-water-study/


IBW*A*®

There currently is both a lack of standardized methods and no scientific consensus on the potential health impacts of nano- and microplastic particles. Therefore, media reports about these particles in drinking water do nothing more than unnecessarily scare consumers.

https://bottledwater.org/nr/ibwa-responds-to-new-nanoparticle-imaging-study/

The weight of the scientific evidence provided by current data on adverse effects of NMP on human health is low,

https://www.nytimes.com/2024/01/11/well/live/bottled-water-nanoplastics.html

