MJPhD

LEAD: THE ACCIDENTAL POISON

MARK JONES
CREATIVE DIRECTOR
MJPHD, LLC

LEAD PIPE IN POMPEII

Vesuvius 79 AD pipes to 200 BC

Facts about lead (answer the question "what is lead?").

Describe where lead is found and why (answer the question "where does lead come from?").

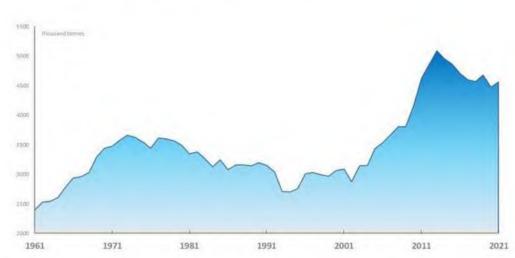
Talk through public health issues brought on by lead (answer "why should I care about lead and how concerned should I be?").

82 Lead 207.2

Period 1	Group 1 (Ia) 1 H Hydrogen 1.008	2 (IIa)											13 (IIIa)	14 (IVa)	15 (Va)	16 (Vla)	17 (VIIa)	18 (VIIIa) 2 2 He Helium 4,0026
2	Li Lithium 6.94	Be Berytlium 9.0122											5 3 B Boron 10.811	6 4 C Carbon 12.011	7 5 N Nitrogen 14.007	8 6 O Oxygen 15.999	9 7 F Fluorine 18.998	10 8 Ne Neon 20.180
3	Na Sodium 22.990	Mg Magnessum 24.305	3 (IIIIb)	4 (IVb)	5 (Vb)	6 (VIb)	Transition 7 (VIIb)	on metals 8 (VIIIb)	9 (VIIIb)	10 (VIIIb)	11 (1b)	12 (IIb)	Al Al Aluminum 26.982	Si Silicon 28.085	P P Phosphorus 30.974	16 6 S Sulfur 32,06	Cl Chlotine 35.45	18 8 Ar Argen 39.948
4	K Fotassium 39.098	20 2 Ca Calcium 40.078	Sc Scandress 44.956	22 4 Ti Titanium 47.867	23 5 V Vanadium 50.942	Cr Chromeium 51.996	25 7 Mn Manganese 54.938	Fe 1000 55.845	27 9 Co Cobalt 58.933	28 10 Ni Nickel 58.693	29 11 Cu Capper 63.546	30 12 Zn Zinc 65.38	31 3 Ga Gallimm 69.723	Ge Germanium 72.630	33 5 As Ansenic 74.922	Se Seleniam 78.971	Br Br Bremine 79.904	36 8 Kr Krypton 83.798
5	Rb Rb Rubidium 85.468	Sr Sr Steoretium 87.62	39 3 Y Yttrium 88.906	40 4 Zr Zirronuum 91.224	41 5 Nb Nobbern 92,906	Mo Mo Molybdennus 96.95	Tc Tc Technesium (98)	Ru Ru Ruthenium 101.07		Palladium 106.42	_		In	50 4 Sn	51 5 Sb Inflamory 121.76	Te Te Tellurium 127.60	53 7 I I lodins 126.90	54 8 Xe Xenion 131.29
6	CS Casium 132.91	Ba : 84rium 137.33	71 3 * Lu Lutetium 174.97	72 4 Hf Hafnium 178.49	73 5 Ta Tantahum 180.95	74 6 W Tungsien 183.84	75 7 Re Rhenium 186.21	76 8 Os Osmissas 190.23	77 9 Ir Isdium 192.22	Pt Ptalinum 195.08	79 11 Au Gold 196,97	80 12 Hg Mescury 200.59	TI Thailing 204.38	Pb	Bi Bi Bismuth	Po Po Polonium (209)	At At Astaline (210)	86 8 Rn Raden (222)
7	Fr Fr Franciscant (223)	Ra *	1200	Rf Rutherfordinm (267)	105 5 Db Dubnium (268)	Sg Seabergram (269)	Bh Bolusium (270)	108 8 Hs Hassuum (269)	Mt Meitmerium (278)	Ds Ds Darmstadium (281)	Rg Rg Roentgenium (282)		Nh Nh Nihonium (286)	F1 Flerovium (289)	Mc Moscovium (290)	Lv Lv Livermorium (293)	Ts Tennexsine (294)	Og Og Ogamessen (294)

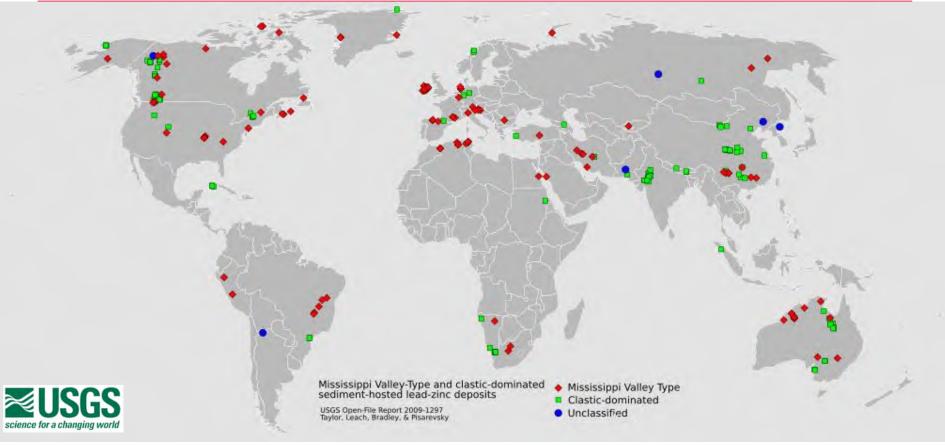
*	57 3 La Landiana 138.91	58 4 Ce Cenum 140.12	Pr Pr Prassodymium 140.91	Nd Nd Neodymium 144.24	61 7 Pm Premethium (145)	62 8 Sm 5amarium 150.36	63 9 Eu turopinan 151.96	Gd 10 Gd Gadolinium 157.25	65 11 Tb Terbium 158.93	Dy Dysprosium 162.50	67 13 Ho Holmium 164.93	68 14 Er Broum 167.25	69 15 Tm Thulium 168.93	70 16 Yb YUerbium 173.05
**	Ac Acontum (227)	90 4 Th Therium 232.04	Protectinium 231.04	92 6 U Uranium 238.03	93 7 Np Neptumum (237)	Pu Pu Plutonium (244)	95 9 Am Americiam (243)	96 10 Cm Curium (247)	97 11 Bk Berkelium (247)	Of Californium (251)	Es finsteinium (252)	100 14 Fm Ferminan (257)	Mendelevium (258)	No No Nobelitum (259)

WHERE DOES LEAD COME FROM?



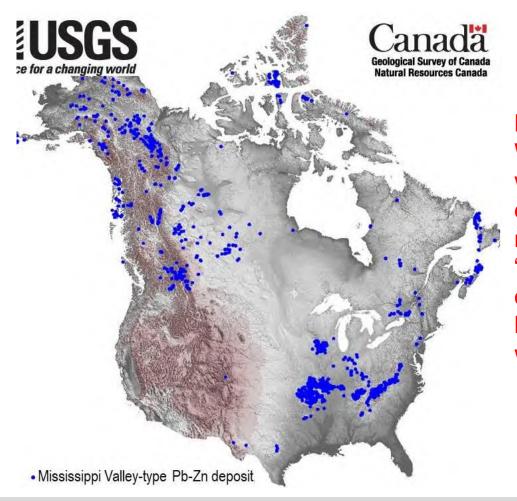
World Lead Reserves 2021

World Lead Mine Supply 1961-2021


In 2021, global lead mine production was 4.6 million tonnes.

International Lead and Zinc Study Group

LEAD ORE DEPOSITS



	-	roduction	Reserves ⁷
United States	2022 273	2023 ^e 270	4,600
Australia	435	440	835,000
Bolivia	90	90	1,600
China	1,950	1,900	20,000
India	220	220	1,900
Iran	e52	50	2,000
Mexico	273	270	5,600
Peru	255	250	5,000
Russia	e210	200	8,700
Sweden	75	70	1,700
Tajikistan	^e 53	50	NA
Turkey	e67	70	1,600
Other countries	507	610	_ <u>5,900</u>
World total (rounded)	4,460	4,500	95,000

Miners came to
Wisconsin in early 1800s
when lead was
discovered. The lead
miners were nicknamed
"badgers" because many
of them lived in burrowlike dwellings through the
winter.

Imports for consumption:					,
Lead in concentrates	(¹)	(¹)	1	(¹)	(¹)
Refined metal, unwrought	501	382	614	651	570
Exports:					
Lead in concentrates	259	265	262	255	270
Refined metal, unwrought (gross weight)	25	17	22	26	25
Consumption, apparent ²	1,630	1,450	1,640	1,630	1,600
Price, average, North American, cents per pound ³	99.9	91.3	113.0	116.5	115
Employment, mine and mill (average), number ⁴	1,600	1,790	1,830	1,870	1,800
Net import reliance ⁵ as a percentage of apparent consumption,	29	25	36	38	35

Recycling: In 2023, an estimated 1,000,000 tons of secondary lead was produced, an amount equivalent to 62% of apparent domestic consumption. Nearly all secondary lead was recovered from old scrap, mostly lead-acid batteries.

2019

274

266

1.150

2020

306

297

1.090

2021

294

286

1.050

2022

273

264

1.010

2023^e

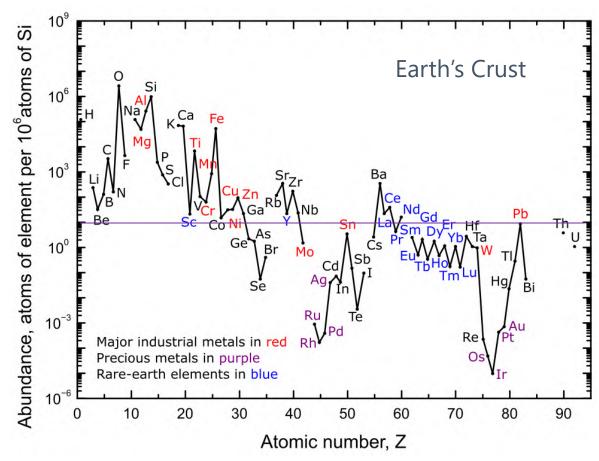
270

260

1,000

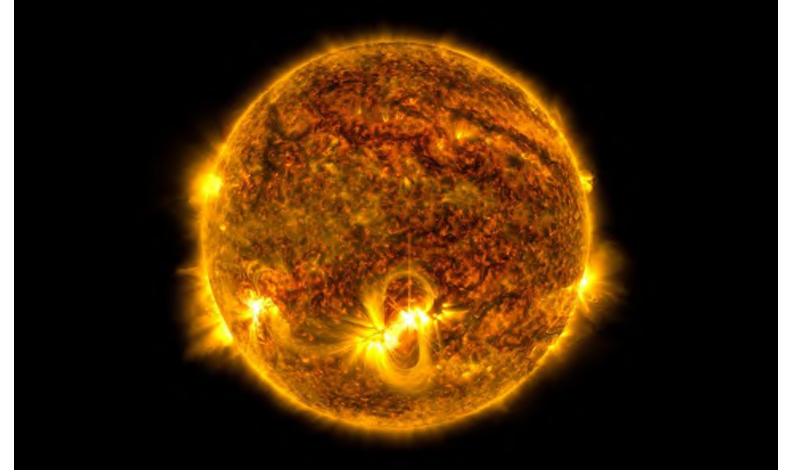
refined metal

Salient Statistics—United States:

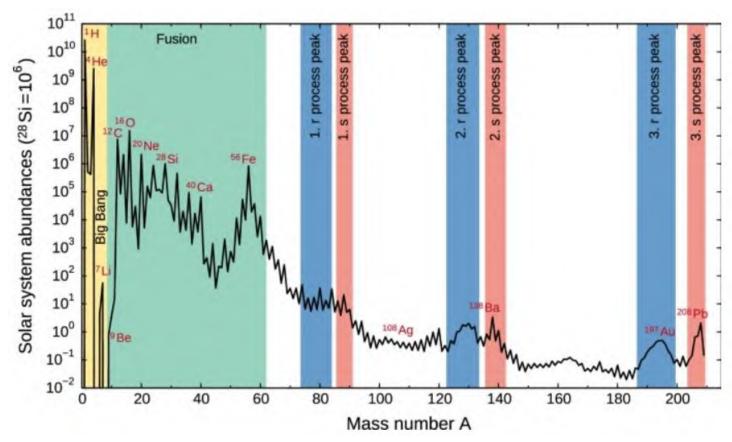

Mine, lead in concentrates

Secondary refinery, old scrap

Mine, recoverable lead


Primary refinery

Production:



By Gordon B. Haxel, Sara Boore, and Susan Mayfield from USGS; vectorized by User:michbich - http://pubs.usgs.gov/fs/2002/fs087-02/, Public Domain, https://commons.wikimedia.org/w/index.php?curid=11215468

source: NASA

Arcones, A., Thielemann, FK. Origin of the elements. Astron Astrophys Rev 31, 1 (2023). https://doi.org/10.1007/s00159-022-00146-x

source: NASA; Hubble Space Telescope image of the Veil Nebula

LEAD FROM ORE

$$2 \text{ PbS} + 3 \text{ O}_2 \longrightarrow 2 \text{ PbO} + \text{SO}_2$$

$$2 \text{ PbO} + \text{C} \longrightarrow 2 \text{ Pb} + \text{CO}_2$$

$$2 \text{ PbS} + 3 \text{ O}_2 + \text{C} \longrightarrow 2 \text{ Pb} + \text{SO}_2 + \text{CO}_2$$

$$2 \text{ PbO} + \text{PbS} \longrightarrow 2 \text{ Pb} + \text{SO}_2$$

ELEMENTAL USES

lead projectiles 1500

ELEMENTAL USES

USE OF LEAD COMPOUNDS - POTTERY GLAZING

https://www.invaluable.com/auction-lot/superb-roman-lead-glazed-pottery-skyphos-45b-c-5ff46 fab 85

USE OF LEAD COMPOUNDS - PAINT PIGMENTS

USE OF LEAD COMPOUNDS - PAINT PIGMENTS

lead chromate

used for centuries; still used in pottery, plastics, industrial coatings.

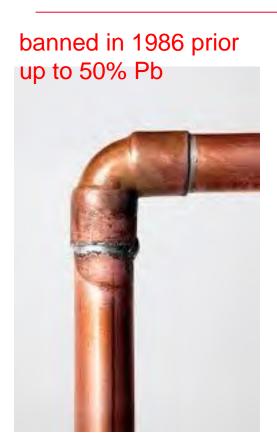
USE OF LEAD COMPOUNDS - MAKE-UP

USES OF LEAD - SWEETENING WINE

lead acetate = sugar of lead

Romans sweetened wine with *sapa*, a syrup made by boiling down grape juice in leaded vessels

USES OF LEAD - GLASS MAKING


leaded glass - lead replaces the calcium content of a typical glass.

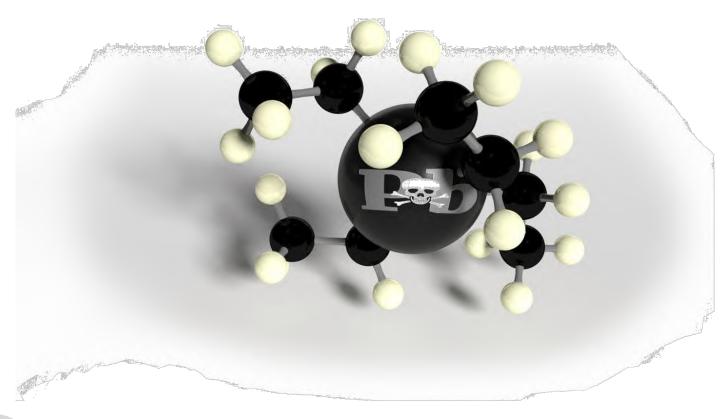
PbO is added, typically 18–40% (by mass), imparting clarity and improving molding.

dates to antiquity 1670's Britain = first industrial production

USE OF LEAD ALLOYS - SOLDERS

still available

USE OF LEAD - ELEMENTAL

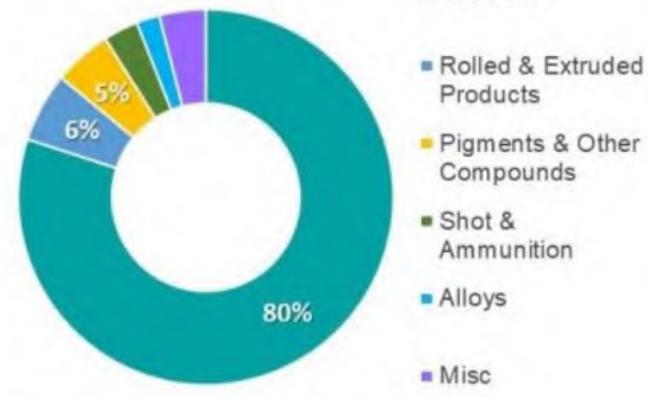

USE OF LEAD COMPOUNDS - GASOLINE ADDITIVE

introduced in late 1920's; banned in cars with catalytic converters in 1975. Complete ban in 1996. 2021 UN said no more automotive being sold

USE OF LEAD COMPOUNDS - GASOLINE ADDITIVE

USE OF LEAD ALLOYS - FREE-MACHINING STEEL

Lead is insoluble in steel and makes imperfections that result in chips that break off during cutting.


Not weldable!

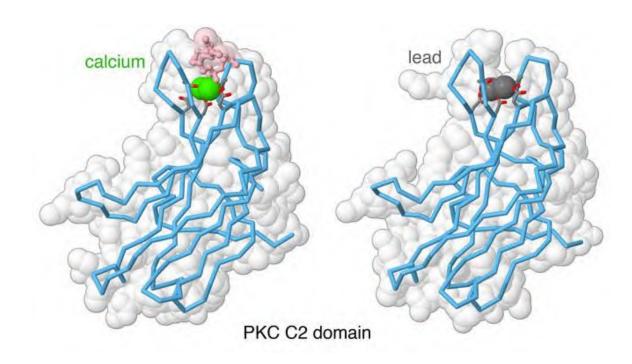
USE OF LEAD COMPOUNDS - PVC STABILIZERS

Batteries

· International Lead & Zinc Study Group

Period 1	Group 1 (Ia) 1 H Hydrogen 1.008	2 (IIa)											13 (IIIa)	14 (IVa)	15 (Va)	16 (Vla)	17 (VIIa)	18 (VIIIa) 2 2 He Helium 4,0026
2	Li Lithium 6.94	Be Berytlium 9.0122											5 3 B Boron 10.811	6 4 C Carbon 12.011	7 5 N Nitrogen 14.007	8 6 O Oxygen 15.999	9 7 F Fluorine 18.998	10 8 Ne Neon 20.180
3	Na Sodium 22.990	Mg Magnessum 24.305	3 (IIIIb)	4 (IVb)	5 (Vb)	6 (VIb)	Transition 7 (VIIb)	on metals 8 (VIIIb)	9 (VIIIb)	10 (VIIIb)	11 (1b)	12 (IIb)	Al Al Aluminum 26.982	Si Silicon 28.085	P P Phosphorus 30.974	16 6 S Sulfur 32,06	Cl Chlotine 35.45	18 8 Ar Argen 39.948
4	K Fotassium 39.098	20 2 Ca Calcium 40.078	Sc Scandress 44.956	22 4 Ti Titanium 47.867	23 5 V Vanadium 50.942	Cr Chromeium 51.996	25 7 Mn Manganese 54.938	Fe 1000 55.845	27 9 Co Cobalt 58.933	28 10 Ni Nickel 58.693	29 11 Cu Capper 63.546	30 12 Zn Zinc 65.38	31 3 Ga Gallimm 69.723	Ge Germanium 72.630	33 5 As Ansenic 74.922	Se Seleniam 78.971	Br Br Bremine 79.904	36 8 Kr Krypton 83.798
5	Rb Rb Rubidium 85.468	Sr Sr Steoretium 87.62	39 3 Y Yttrium 88.906	40 4 Zr Zirronuum 91.224	41 5 Nb Nobbern 92,906	Mo Mo Molybdennus 96.95	Tc Tc Technesium (98)	Ru Ru Ruthenium 101.07		Palladium 106.42	_		In	50 4 Sn	51 5 Sb Inflamory 121.76	Te Te Tellurium 127.60	53 7 I I lodins 126.90	54 8 Xe Xenion 131.29
6	CS Casium 132.91	Ba : 84rium 137.33	71 3 * Lu Lutetium 174.97	72 4 Hf Hafnium 178.49	73 5 Ta Tantahum 180.95	74 6 W Tungsien 183.84	75 7 Re Rhenium 186.21	76 8 Os Osmissas 190.23	77 9 Ir Isdium 192.22	Pt Ptalinum 195.08	79 11 Au Gold 196,97	80 12 Hg Mescury 200.59	TI Thailing 204.38	Pb	Bi Bi Bismuth	Po Polonium (209)	At At Astaline (210)	86 8 Rn Raden (222)
7	Fr Fr Franciscant (223)	Ra *	1200	Rf Rutherfordinm (267)	105 5 Db Dubnium (268)	Sg Seabergram (269)	Bh Bolusium (270)	108 8 Hs Hassuum (269)	Mt Meitmerium (278)	Ds Ds Darmstadium (281)	Rg Rg Roentgenium (282)		Nh Nh Nihonium (286)	F1 Flerovium (289)	Mc Moscovium (290)	Lv Lv Livermorium (293)	Ts Tennexsine (294)	Og Og Ogamessen (294)

*	57 3 La Landiana 138.91	58 4 Ce Cenum 140.12	Pr Pr Prassodymium 140.91	Nd Nd Neodymium 144.24	61 7 Pm Premethium (145)	62 8 Sm 5amarium 150.36	63 9 Eu turopinan 151.96	Gd 10 Gd Gadolinium 157.25	65 11 Tb Terbium 158.93	Dy Dysprosium 162.50	67 13 Ho Holmium 164.93	68 14 Er Broum 167.25	69 15 Tm Thulium 168.93	70 16 Yb YUerbium 173.05
**	Ac Acontum (227)	90 4 Th Therium 232.04	Protectinium 231.04	92 6 U Uranium 238.03	Np Np Neptumum (237)	Pu Pu Plutonium (244)	95 9 Am Americiam (243)	96 10 Cm Curium (247)	97 11 Bk Berkelium (247)	Of Californium (251)	Es finsteinium (252)	100 14 Fm Ferminan (257)	Mendelevium (258)	No No Nobelitum (259)

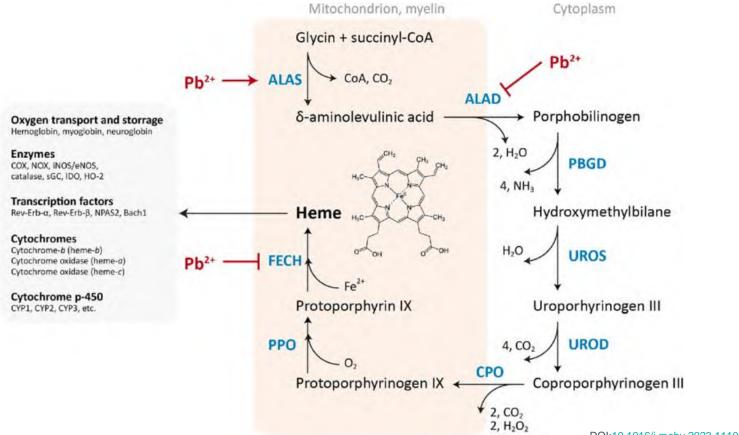


iod 1	Group 1 (Ia) 1 1 H Hydrogen 1.008	2 (Ha)											13 (IIIa)	14 (IVa)	15 (Va)	16 (Vla)	17 (VIIa)	18 (VIIIa) 2 2 He Helimm 4.0026
2	Li Li tithium 6.94	Be Beyllium 9.0122											5 3 B Boron 10.811	6 4 C Carbon 12.011	7 5 N Nitrogen 14.007	8 6 O Oxygen 15.999	9 7 F Fluorine 18.998	10 8 Ne Neon 20,180
3	Na Sodium 22.990	Mg Magnessum 24.305	3 (IIIb)	4 (IVb)	5 (Vb)	6 (VIb)	Transitio 7 (VIIb)	on metals 8 (VIIIb)	9 (VIIIb)	10 (VIIIb)	11 (Ib)	12 (IIb)	Al Al Aluminium 26.982	Si Silicon 28.085	P P Phosphorus 30.974	16 6 S Sulfur 32,06	Cl Chlotine 35,45	18 Ar Ar Argon 39.948
4	K Potassium 39.098	20 2 Ca Calcium 40.078	Sc Scandium 44.956	Ti Ti Titanium 47.867	23 5 V Vanadium 50.942	24 6 Cr Chromerum 51.996	25 7 Mn Manganese 54.938	26 8 Fe bron 55.845	27 9 Co Coball 58.933	28 10 Ni Nickel 58.693	29 11 Cu Copper 63.546	30 12 Zn Zinc 65.38	31 3 Ga Gallimm 69.723	Ge Germanium 72.630	33 5 As Arsenic 74.922	Se Selenium 78.971	35 7 Br Bromine 79.904	Kr Kr Krypton 83.798
5	Rb Rb Rubidium 85.468	Sr Strontium 87.62	39 3 Y Yttman 88.906	Zr Zr Zircontum 91.224	41 5 Nb Nooburm 92,906	Mo Mo Molybdemum 95.95	Tc Tc Technesium (98)	Ru Ru Ruthenium 101.07	45 9 Rh Rhedum 102.91	Pd Pd Palladinm 106.42	47 11 Ag 51 97 107.87	48 12 Cd Cadminum 112.41	49 3 In Indiam	Sn 4	51 5 Sb tellmonty 121.76	Te Tellurium 127.60	53 7 I I lodine 126.90	54 & 8 Xe Xenon 131.29
6	Cs Cs Carsinum 132.91	56 2 Ba 8arium 137.33	71 3 * Lu Luterium 174.97	72 4 Hf Hatnisss 178.49	73 5 Ta Tantalum 180.95	74 6 W Tungsien 183.84	75 7 Re Rhenium 186.21	76 8 Os Osmins 190.23	Ir Ir Ir Iridium 192.22	78 10 Pt Pt Ptalinum 195.08	79 11 Au Gold 196.97	80 12 Hg Mercury 200.59	TI Thallim 204.38	Pb	Bi	Po Polonium (209)	At At Astatine (210)	86 8 Rn Raden (222)
7	Fr (223)	88 2 Ra Radium (226)	103 3 * Lr Lawrencium (266)	Rf Rf Rutherfordinm (267)	105 5 Db Dubnium (268)	Sg Seabergram (269)	107 7 Bh Bohrium (270)	108 8 Hs Hassium (269)	Mt Meitmerium (278)	Ds Ds Dammstadium (281)	Rg Roentgenium (282)	112 12 Cn Coperaciona (285)	Nh Nh Nihonium (286)	FI Flerevium (289)	Mc Moscovium (290)	Lv Lv Livermorium (293)	Ts Ts Tennessine (294)	Og Ogamesson (294)

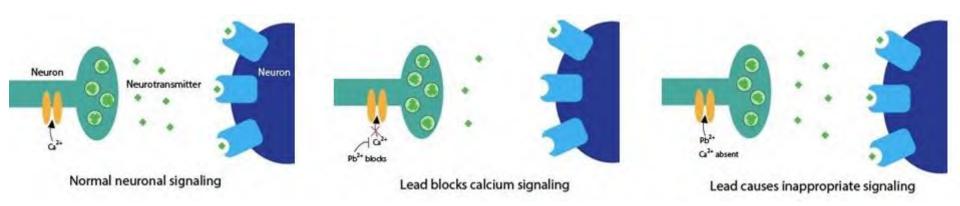
*	La La Landhianan 138.91	Ce	Pr Pr Prassedymium 140.91	Nd Nd Neodymium 144.24	Premechium (145)	62 8 Sm Samarium 150.36	Eu Eu turopian 151.96	Gd Gd Gadelinium 157.25	65 11 Tb Terbium 158.93	Dy Dy Dysprosium 162.50	67 13 Ho Holmium 164.93	68 14 Er Brbum 167.25	69 15 Tm Thultum 168.93	70 16 Yb YWerbium 173.05
**	Ac Ac Actinium (227)	90 4 Th Therium 232.04	Protactinium 231.04	92 6 U Uranium 238.03	93 7 Np Neptunium (237)	Pu Pu Plutonium (244)	95 9 Am Americium (243)	96 10 Cm Curium (247)	97 11 Bk Berkelium (247)	Of Cf Califernium (251)	Es Einsteinium (252)	100 14 Fm Ferminam (257)	Mendelevium (258)	No No Nobelium (259)

LEAD INTERACTS WITH CALCIUM BINDING SITES

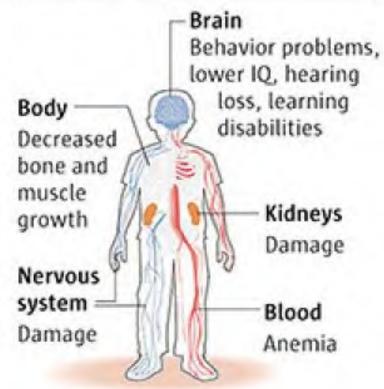
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4961898/

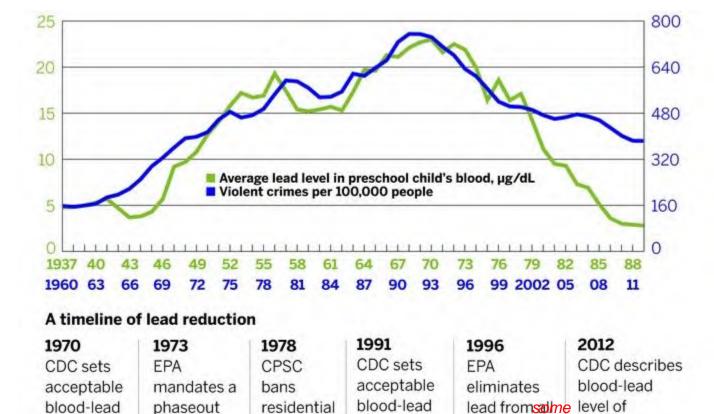

LEAD DAMAGES RED BLOOD CELLS

Basophilic stippling is a typical sign of lead poisoning. The term refers to small, blue, dot-like structures scattered uniformly throughout the hemoglobin area of red blood cells.


LEAD INTERFERES WITH HEME SYNTHESIS

DOI: 10.1016/j.mehy.2023.111095


LEAD INTERFERES WITH NEURONAL ACTIVITY



CHILDREN

Economists hypothesize that regulation of leaded gasoline and lead paint in the 1970s caused crime rates to drop in the U.S. about 20 years later. CPSC = Consumer Product Safety Commission. SOURCES: Rick Nevin, FBI Uniform Crime Reporting Statistics

lead paint

level of

10 µg/dL

>5 µg/dL

as elevated

U.S. motor

fuel

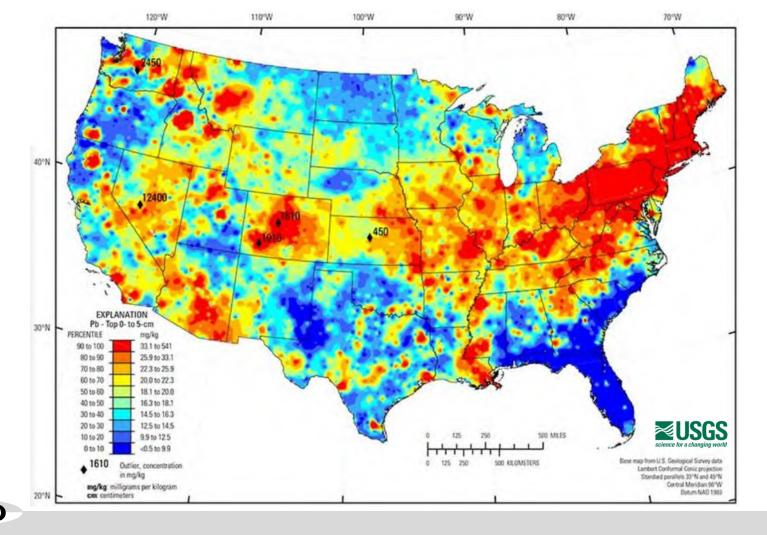
level of

40 µg/dL

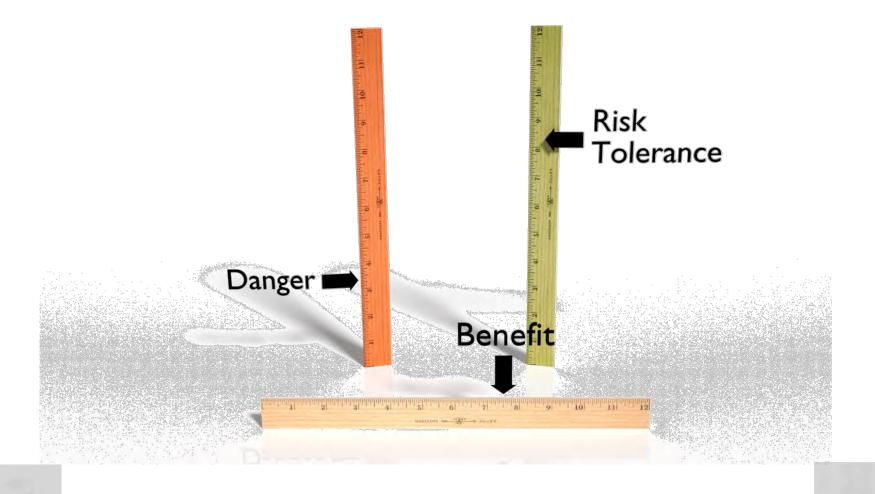
of leaded

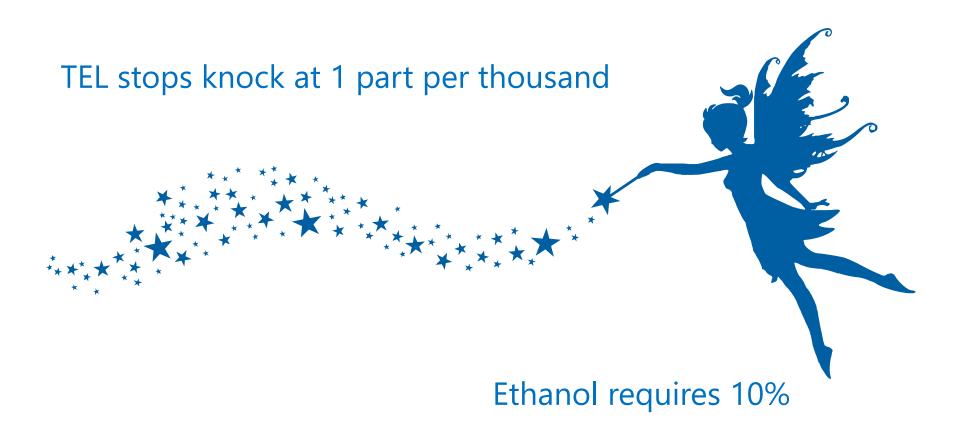
gasoline

...the best available science which shows there is no safe level of exposure to lead.

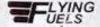


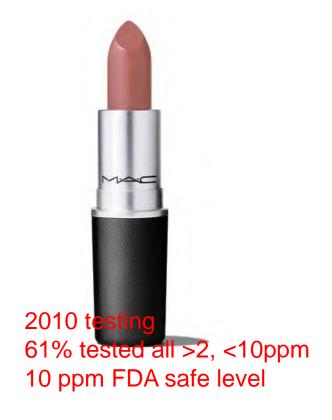
There is no level of exposure to lead that is known to be without harmful effects.


There is no level of exposure to lead that is known to be without harmful effects.



Effective January 1, 1996, leaded gasoline was banned by the Clean Air Act for use in new vehicles other than aircraft, racing cars, farm equipment, and marine engines. The UN announced Algeria used the last of its automotive leaded Masoline stockpile on August 30, 2021. CONTAINS LEAD (TETRAETHYL)


under cover accure adequate ventilation. Vapours can cause faminable mixtures with air. Do not west, heat or drill this container. Emptied container allil contains materials which may ignite with


Do not empty into dresse. Does and contain splitages using their non-combustible absorbed. trained. Use dean non-spansing tools to option and place into suitable labeled container. Flamps quantities of this material enter the waterways contact the Encouramental Protection Authority or your local vasile management sufforty. Dispose of container and waste in a

Carton doolds, clean syards, sand or earth may be used for small free only. Fire fighters should wair full protective dothing and self-contained treathing apparatus. Additional information is Exted in the Material Sefety Data Shoet.

Emergency contact number (34 hours): 1400 651 918 (Australia)

200 LITRES

action level 1ppm
12 of 36 above; 3.52 highest
from soil
450 cases from apple sauce due to
lead chromate

15 poisoning cases

25% Pb in color dust

https://www.pvwc.com/lead-in-water-pipes/

Orthophosphates are added to water to reduce the amount of lead leaching into it from pipes. They do this by forming a layer of low-solubility lead-phosphate complexes inside the pipe. This method of corrosion control was not used for the Flint River water supply.

FACT SHEET

EPA's Lead and Copper Rule Improvements October 2024

Lead in drinking water irreparably harms children and adults. Lead is a highly toxic metal that can impact brain development in children, kidney function in adults, and interferes with the production of red blood cells that carry oxygen to all parts of your body. The federal government banned the installation of new lead pipes in 1986, yet up to 9 million homes and businesses are still connected to water mains through legacy lead pipes in neighborhoods across America. These remaining lead pipes are disproportionately concentrated in low-income communities and communities of color.

Key Provisions from Lead and Copper Rule Improvements

For the first time, the vast majority of water systems will be required to replace lead service lines within 10 years. By removing the greatest source of lead in drinking water nationwide, we can further the goal of safe drinking water for current and future generations.

Facts about lead (answer the question "what is lead?").

Describe where lead is found and why (answer the question "where does lead come from?").

Talk through public health issues brought on by lead (answer "why should I care about lead and how concerned should I be?").

MJPHD.net

MJPhD